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Science requires going beyond observations

Sources of uncertainty in weather and
climate simulation:

chaotic or aleatoric uncertainty or
internal variability
scenario uncertainty dependent on
policy and human actions.
structural or epistemic uncertainty,
imperfect understanding.

The premise of seamlessness is that the same model can be used for solving both initial
value problems and boundary value problems, including counterfactual values.
From Hawkins and Sutton (2009).
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Model configuration and calibration in a seamless modeling system

Equivalent predictability at lower cost in FLOR vs CM2.5.
Figure courtesy Gabe Vecchi, Princeton University.
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Current generation GFDL models

Note: IPCC models GFDL-CM4 and ESM4 use higher ocean resolution (0.25◦, 0.5◦).
Figure courtesy Tom Delworth, NOAA/GFDL.

V. Balaji (balaji@princeton.edu) Seamless modeling and ML 24 September 2020 6 / 22



Outline

1 Seamless modeling
What is seamlessness?
Seamless modeling systems

2 Machine learning for models
Learning parameterizations from high-resolution simulations
Parameter calibration
Training on models, training on observations

3 Ideas and challenges

V. Balaji (balaji@princeton.edu) Seamless modeling and ML 24 September 2020 7 / 22



What does any of this have to do with ML?

Models, even “seamless” ones, may be configured or calibrated differently for
different problems (e.g forecast horizons).
Each problem carries an implicit cost function by which a model configuration is
declared suitable.
Models do not converge cleanly with resolution: much unresolved physics is not yet
“scale-aware”.
Computation alone is not going to make the problem go away (see below...)
Important new constraints on models from observations (new generation of satellites,
Argo...)
While data science is a misnomer (what is non-data science?) the convergence of
computation and statistics that we call ML provides paths forward toward
seamlessness: traceable hierarchies of scale.
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What can we expect at an exaflop?

Will exascale be the rescue? Neumann et al (2019).

ICON projects that a 1 km global model will run
at 0.06 SYPD on “pre-exascale” technology:
17X improvement needed for 1 SYPD.
This will be on 200,000 nodes (roughly 2xGaea).
DECK: 1000 SY.
A full suite of hindcasts for seasonal forecasting:
10,000 SY.

Hypothesis: vastly reduced uncertainty at 1 km.
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https://royalsocietypublishing.org/doi/full/10.1098/rsta.2018.0148


No separation of "large" and "small" scales

Nastrom and Gage (1985). More fidelity, more complexity over time in small scales
(“physics”). The backscatter idea (Jansen and Held 2014) provides an energetically
consistent framework for SGS.
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https://www.sciencedirect.com/science/article/pii/S1463500314000766


Learn from short duration high resolution simulations

(Courtesy: S-J Lin, NOAA/GFDL).
(Courtesy: D. Randall, CSU;
CMMAP).

Global-scale CRMs (e.g 7 km simulation on the left) and even super-parameterization
using embedded cloud models (right) remain prohibitively expensive.
Can we learn the statistical aggregate of small scales? See Schneider et al 2017,
Gentine et al (2018), O’Gorman and Dwyer (2018), Bolton and Zanna (2019), ...
GFDL-Vulcan collaboration begun.
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078202
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Model calibration

Model calibration or “tuning” consists of reducing overall model error (relative to some
goal of modeling) by modifying parameters. In principle, minimizing some cost function:

C(p1,p2, ...) =
N∑
1

ωi‖φi − φobs
i ‖

Usually the p must be chosen within some observed or theoretical range
pmin ≤ p ≤ pmax .
“Fudge factors” (applying known wrong values) generally frowned upon (see
Shackley et al 1999 on “flux adjustments”.)
The choice of ωi is part of the lab’s “culture”. Cost also plays a role.
The choice of φobs

i is also troublesome:
“Over-tuning”: remember “reality” is but one ensemble member...
overlap between “tuning” metrics and “evaluation” metrics.

See for example, Hourdin et al (BAMS 2017)
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https://www.semanticscholar.org/paper/An-Interdisciplinary-Study-of-Flux-Adjustments-in-Shackley-Risbey/3112dd9ae54c8956c148623e87a01c1a0e8bb1b0
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Problems with parameter optimization

Parametric uncertainty vs structural uncertainty.
A two stage process: process-level constraints followed by global constraints.
The choice of cost function.
Metric weights and normalization.
Do observations sample the space sufficiently?
If models “higher” in the hierarchy are used for calibration, are they representative of
all possible states? What the associated uncertainties?
Internal feedbacks and compensating errors.

Danny Williamson (Exeter) has been arguing that we should look at it differently, as a
problem of eliminating implausible regions of phase space rather than optimization.
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Formulating the problem

∂x
∂t

= D(x) +
∑

n

Pn(x, λn)

Structure is given by P, we are trying to calibrate values of a vector of parameters λ
Multiple metrics we wish to satisfy. For each metric f we can define a distance given
by:

If (λ) =
‖rf − Ef [λ]‖

σ2
r ,f + σ2

d ,f + Var [f (λ)]

Euclidean distance over history normalized by error (observational, structural,
chaotic)
Sample λ space as exhaustively as practical for I < T , the NROY space. Iterate in
waves. Can use different metrics in subsequent waves.

NROYn = ∩k NROYfk
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Couvreux et al (2020)

LES as ground truth,
multiple variants to get
“observational error”.
Emulate LES using
SCMs encoding all the
P.
Latin hypercube
sampling of λ
Fit Gaussian processes
to SCMs to densely
sample all values of λ
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Gaussian processes

Extremely standard emulator, widely available in python libraries
Very poor at extrapolation, so training data must span phase space!
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Couvreux et al 2020, some highlights

Importance of a library of distinct physical regimes (e.g marine, continental) sampled
by LES
Results are sensitive to LES turbulence closure and numerics.
Don’t do sensitivity analysis on the full phase space (premise is that most of it is
unphysical). But see discussion of order of imposition of metrics.
Even individual P may have multiple tunable subsystems with compensating errors,
e.g EDMF.
Rule of thumb: need 10×rank(λ) SCM runs.
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Hourdin et al (2020)

0.00

0.05

0.10

0.15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

DZ

EVAP

CLC

●

●

●

Remaining space:0.0045946

0 5 10 15
Wave number

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

NR
OY

 re
m
ai
ni
ng

 fr
ac
tio

n

Γz=0.12, L79
Γz=0.06, L79
Γz=0.03, L79
Γz=0.12, L95
Γz=0.06, L95
Γz=0.03, L95

Eliminate implausible parameter space comparing SCMs with LES.
... leaving irreducible (“structural”) model error.
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Training on models or observations?

From Chemke and Polvani (2019). Hadley cell strength is likely correct in models and not
in “observations”!
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https://www.nature.com/articles/s41561-019-0383-x
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Using ML in seamless modeling: ideas and challenges

Big data, machine learning, AI: not a step change but massive computation applied
to existing methods (regression, classification, assimilation)
Seamless models may be a hierarchy of scale, resolution, cost: ML-inspired
emulators help navigate the hierarchy.
Models are calibrated in multiple stages: ML can play a role at process-level as well
as global constraints.
Training data may come from model hierarchy (e.g CRM, LES) or observations and
reanalysis (even for directly predictive methods, e.g Ham et al, Nature 2019)).
Ensure training data and ML methods are well-anchored in theory (see next talk by
Maike Sonnewald).
Fundamental questions still unanswered:

How much physics should be learnt?
Can we assume a structure for the physical formulation?
Process fidelity vs overall model error.
Will ML give us differentiable models?
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